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NASA TT F-I0,377

APPROXIMATE METHOD FOR THE DETERMINATION OF THE NATURAL

OSCILLATION FRF_UENCIES OF CYLINDRICAL, CONIC AND
TOROIDAL SHELLS

I. I. Meyerovich

ABSTRACT

Development of a method for the approximate determina-
tion of the flexural vibrations of shells of revolution, where
the vibrations involve the appearance of nodal lines along
the generatrix and in the meridional directions. The method
is based on the use of a Ritz-type strain-energy approach and
the selection of the approximating functions such that--besides

the boundary conditions--they satisfy the additional conditions
of the absence of fluctuations of circumferential strains and
stresses and the absence of shear in the middle surface. A

detailed analysis is given of the frequency spectrum of a cylin-
drical shell with arbitrary boundary conditions and of the com-
bined oscillations of two cylindrical shells of different rig-

idity. These, and the results obtained for a closed thin-
walled toroid_l shell suspended in free space, are compared

with the experiment.

Introduction

The present work considers the flexural oscillations of shells of revo-/l_*
lution which exhibit nodal lines in meridional directions and along the gen-
eratrlx.

A series of Soviet works have been devoted to the investigation of this

class of oscillations -- the works of Breslavskiy, ref. 3, _ilippuv, ref. 7,

-- and also works conducted abroad and Araold Warburton, ref. 4, which per-

tain primarily to cylindrical shells and to conic shells with small conicity.

We assume that no limitations are imposed on the displacement along

the normals to the middle surface w, along the tangents to the circular cross

*Numbers given in margin indicate _agination in original foreign text.
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sections v and along the shell u. We then obtain a characteristic equation of
the third order for computing the square of the frequency of natural oscilla-
tions associated with a cylindrical shell which has a hinge support and a fixed

number of waves: p6 _ L2p5 + _p2 - L0 = O. The roots of this equation differ

radically from each other.

The following expressions_re used as approximation equations for determin-
ing the square of the lowest frequency

p2= '0, (3)
LI

L. ( [.:Lo'_
p2= _- _,1 -]- /_-2,-), (/4)

which agree well with experimental results, if the number of waves in the cir-
cumferential direction is n > 4.

If we neglect the coupling between the forms of oscillations containing a
different number of waves in the longitudinal direction, these equations may also
be utilized for other boundary conditions.

From the analysis of the amplitude of oscillations it follows that the low-

est frequency is determined primarily by the flexural oscillations w, and the
second by longitudinal displacements u, whereas the third is determined by shear
oscillations v.

For a single shell Flyugge (reference 6) presents the following frequency
values

= 18.36 Hz, P2 = 918 Hz, P3 = 1_53 Hz.Pl

The ratios of amplitudes are as follows:

for PlW: u:'v = i: -0.25: -O.Oh,

for P2u: v: w = i: 0.076: 0.0526,

for p3v: u: w = l: -0.i_6: 0.245.

Since, in practice, in order to compute Pl it is not necessary to know P2

and p_, we can impose specific relationships on u, v and w, and place of the
J 2

cubic equation for p we can consider an equation of the form A:p"-+A2=O. _.

We solve this problem by using the Ritz energy method, selecting the approx_-
imation functions in such away that in addition to bounds4_ conditions they _
satisfy auxiliary conditions stipulating that there is an absence of
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oscillations producing elongations in the ring direction and an absence of
shear in the middle surface.

In order to convince ourselves that the selected hypotheses are expedient
and that it is possible to apply then%to a more complex conical or toroidal con-
figuration involving shells with various boundary conditions, we carried out a
detailed analysis in the first part of the work pertaining to the frequency
spectrum of cylindrical shells with arbitary boundary conditions. We also con-
sidered the combined oscillations of two cylindrical shells of different rigidity.

In the second part we considered the oscillations of a conical shell hinged
along the edges.

The theoretical results have been verified experimentally.

We note that there are no approximate equations available for computing the
natural oscillations of conical shells.

In the third part we considered the oscillations of a closed, thin-walled
toroidal shell in free space. An exact solution of this problem has not been
obtained to date. There are also no data on the experimental investigations of
such shells.

I. Cylindrical Shells

i. Basic Propositions

In order to analyze the spectrum of frequencies associated with the natural
osciallations of the shell, we designate the displacements normal to the coordi-
nate line x = const, lying on the middle surface, by w, the displacements tan-
gential to the circular sections by v and the longitudinal displacements by u
(figure la).

Furthermore, by introducing a curvilinear system of coordinates x, e, we
assume that u, v and w may be expressed as a sum of the products of two functions,
of which one depends on x and the other on e. The number of waves in the cir-
cumferential direction for a closed shell must be even and can be represented as
a function of cos n_ or sin n6.

We write the displacements in the following form

' w=_ A=.W/=(x) cosnO,

• a..v.(x)sinnO, (1.l)

3
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The strain parameters of the cylindrical shell are determined by /150
the following expressions

0# _ '., 0_ o_ "I" +#
. "=:o_' _=R+o R' -_ R_' (1.2)

o_w 1 o_w , ,,,(mXI -=- -_ ,")

We assume that the shell is not extended in the transverse direction and

+ that there is no shear in the mlddle-surface, i.e., ¢ = w = 0
+ 2

a) I 4

• m

•

Figure i. a, Cylindrical shell; b, conical
< shell; c, toroidal s_ell.

,+ Then it is ohFiously possible to have a relationship between the functions w, v
and u. Specifically2 for each fixed n the following equalities must be satisfied

8..v.(_),,-A..w.(_)=o,}
:! ,.,.v.(_)_c _m_=o. ! (1.,)
)

For any value of x we obtain the following from equality (1.3.)

B.,,V,,(x)==A=,,W,.(x),
(1._)

.._ ' ' A '.c.u=(x)- v=(,_)t-_-_.w.(x)R,
..... j

+1'
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Substituting (1.4) into (i.I) and (1.2), we find an expression for displace-
ments and deformations

W_,(x) R¢_ nO,

%===0,

"-- i

--sin nO. I
n !

We determine the natural frequencies in the form of the shell oscil-
lations with the Ritz method For the approximation function W (x) we select• 111

the natural function of oscillations of an elementary beam element cut out

along the generatrix. W satisfies the equation
m

EJ '_4----W--/PQkW-----O,
dx4

from which it follows that

%IP',,=(.;:.):C,ch kmx +C=sh k_+C aCOskmx+C, sinkm_ (1.7)

TO com_ute the parameters A and the natural frequency of the shell wemn

uA_ethe following system of equations

where P is the potential energy _the shell;
_ _= '_

T is the kinetic energy of the shell which undergoes oscillations with

a frequency p.
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Under the adopted assumption,,

P = 1- ._ 120--_a) .} .}
0 oo

: xO-_)_qRexeo, (1.9)

r=oh S[_-+_- +.'l _d_O.
_ o
{ Differentiating (1.8) and (1.9) with respect to A and substituting into

i (1.7), we obtain the following system of equations for each fixed value of n
• In In la 2 In la la-- -t- A.,, (am-- _b,,,)----- O,

-- ;_bm) + au (a+,-- ;_b_n)+... q- A,, n(a_,, -- ;_b_,)-- O,
(1.1oi

/W// 8//I

A,,(a,,, -- p_b,,)+ A_,(a_"-- fb_,")-I-. . .-t- Am,,(a,,,"-- ._b,,,,)='" O.

V

, The coefficient C and _ after intergration over _ will be

;: (_.n)

I

" -+'::";1.,<.i +_; _'-)+_0-_)_ .," R, j

+ , (1.1_)

0
t

++ +,_

w

6 "
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In deriving equations (I.12) and (1.13) we took into account the orthogo-
nality of the beam functions, i.e.,

o],w.(x)%(4ax=0,i (1.1_1

W'.(x)W;(x)d_=O.I

Having considered the general method ef solving the problem of determining
the natural oscillations of the shell, we proceed with the consideration ef
specific cases.

2. A Hinge-supported Shell

A large number of theoretical and experimental works have been devoted to
the investigation of oscillations of a shell of this type. Therefore, we shall
begin our investigations with this case, which is most simple from the stand-
point of the theoretical solution.

Indeed, if the shell is hinged at the ends (x = 0 and x = 1), the flexure
at these points becomes equal to zero and the flexural moment of the shell and
the beam function will be

W,,(x)= sin ,,,...__xI '

re=l, 2, 3... (2.1)

It follows from (i.14) that in equation (i.i0) all of the supplementary

coefficients become equa_ to zero; for each value of m we obtain the following

equation for computing p_ /153m

MR

p_ amn

b,-,,' (2.z)

which can be expanded in the form
(I--.2

(I-_) o_ ,, + n=+ _.,? '

where (2.3)
A2 R

kJ=_=,_=l-_'_=T"
In order to convince ourselves that the adopted hypotheses are expedient,

we use equation (2.3) to compute five shells (the geometric characteristics are
tgtven in table 1) and to compare the resulting quantities with the computed and
experimental data given by Breslavekiy (ref. 3).

I
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TABLE i. GEOMETRIC CHA/%'CTERISTICS OF THE SHELL.

---. P==]_._ T "_- o (l-_,_)" l_,,..,.,k-_.
_,.,_l i '"

I ,540 12,5 ,I0,: 3,42.10 -6 0.2321 0.72( I 6750 E---.2.2.10s¢._s
2 840 175 ] 0.: 1./4.10-o 0.3'241!.02 4820 /*=0,3
3 540 [ ._00 [ 0._ 1.335.10-6 0.3701 1.16 4240

4 817,200' [ 1., 4.07.10-6 0.2_i0.77( 42205 880 1200 0.1 1.33,5.10-s 0.5261l.&5( 4.."20

TABT:i_.2,

,. ,. I,. i,,.I,'..,.I,'mj,.

] IJll !I'l I2 ....... 408 462 550 -- -- --

8 l -- [--'--'--[466 301 41! " :)1__]__I_ _1 !

-- 312] -- -- -- 3451368 361o L. o
12 715 Z

9681034 I

B : _r._.t_.vsl,;,/'s_,..,_la

. : our A_%L

Table 2 shows the experimental value_ for the natural frequencies of

oscillation in Et an_ theoretical values computed by means of our equations and
by means of the Breslavski_ equations.

Comparing the results of computing the natural frequencies by 1_
means of equation (2.3) with the corres_n_ values of experimental frequencies
computed by means of the BreslAv_kiy equatton_ we can see that in all those cues

when the energy of extension can be ne_ect_ coe_d with the fle_l ener_y_
equation (2.3)_ives results which are quite satisfactory. The onder of the
error in equation (2.3) and in the Breslav_kiy method is the sa_e_ in spite of
the fact that our equations are based on hypotheses which differ from those
usually adopted and which simplify the calculations substantially.
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3. Cantilever Shell

In this case the beam function Wm(X ) will be determined as

w/=(x)= _V[ch--k._- cos&,_+S_,(slnx_-- shk.x)], (3.i)

_m_.._ - sh k m -- sin km -- XX_ t

where ch*.km + coskm ' I

kml----1,875, 4,694, 7,854... (3"2)

Substituting (3.1) into equations (l.l_-(IJ2), we obtain

m. EA k 4

+ + n2

-I-2(1 --_)a,,,p _1--._)_ _],n2 .

where I t

_.,= wlw//x, ..p= w._p_x, (3.4)

R h2
_=U-'_= ,:_"

Substituting (3.1) into (1.13), we find

We have the following table of values Wmp and _mp for the first three
values of m (table 3).

TABLE 3.

Wmp -, OIp

!
M

1 0.880 !.1181 1.87 4.09 ---7.466 4.O|
--1|._ --'S._ _.l_ -- $2.40 --_2. _'

3 • 2"/.06 --0.97 -46 -- -- T;.3_

By using table 3 _e can write the coefficient A_ for m = i, 2 and 3 /I___
in the following manner, if we let R/L = _ and.elimi_te the constant -

9
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(1 --_)_ _. {£a n4al"= 12'4_4_I_n4 12"4_4T(1 --n2)2+

T 2_,2 [ -- 0.254 (I -- a 2)+ 3.29 (I --n2)_,2]}
?

(I -- F2)R2 tz4a]a" = 484_14Jr _4 {484_4 Jr (1 -- n2)_ -}-
Fh (3.6)

+ 2_2[4(1--n2)2+ 22,6(1-- ._)2]I"_ 'jj,

(x- F-h_ m .2a_:= 3800_4+ [_.4{3800_4+ (1- .2)2+

R2):!

2, (3.7)
2.n'b,,= n'+ n2-_-32.04_2,

n4b_, = n4+ n _+ 77.38_2,

We can make use of equation (2.2) to compute the frequencies of natural
oscillations, i.e., instead of n systems from m equations we can consider only

one_quation consisting of the diagonal mezber of the matrix. The coupling which
exists between forms W and W is so small that it can be neglected•

m,n m + i_ n
As an example we consider the spectrum of frequencies for shell number 3

see (table i), which confirms there is an absence of coupling between modes

Wln and W2n. For comparison purposes table _ shows the spectrum of frequencies

in Hz for h_nged shells, cantilever shells and rigidly fixed shells as well as
for free shells.

TABIR 4. EFFECT OF THE NATURE OF SHELL SUPPORT ON THE SPECTRUM

OF _ OSCILLATION FREQUENCIES.

mni i ill . I lU I I

i _,_.__---_._ 5 6 7 I0 12 14

2,/'}inked 259 219 312 488 702 980
_. Ca._i ieve r 143 176 304 485 702 980

_. I_i_ id 525 388 378 515 721 990 ;
I II 172 297 485 700 980

._, Froze

It follows from table _ that the frequencies of natural oscillations for a
cantilever shell are below the corresponding frequencies for a hinged shell when
the values of n are s_ll. As n increases and when it is permissible to neglect
the effect of the potential energy of extension, the natural frequencies of
oscillatior_no longer depend on the manner in which the shell £s supported ..... ,

10 ---
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. A Shell Which is Rigidly Fixed Along the Ends

In this case t.lefunction W(x) represents a natural oscillation /156

function for a beam rigidly fixed along the edges

W., (x)-:_f [sln k.,._-- shk,_c + B= (cos k=x-- ch k,,_)], ( 14.1 )

where

Rm = _ ch k= -- cos k=
ch km -J- sin km' (/4-.2)

here

-- x (2m+ 1)q
x------l ' k= = 433; 7.853; .... 2 (4.3)

The value k is the root of the characteristic equation ch k cos k = 1.
m m m

The coefficients (3.1,) _ and w can be written in the following manner accord-

ing to (_.z) and (_.2)

a --/_"" ( 1-F :ZB"/, k_ ( 1_]_2B,,,/--- _, --_--.1" ="= t,_ k./" (u.u)

The coefficients of the characteristic equations (1.10) have the form

n4 1 -- IA:t ,. =t, {
--,_-a.. =k_m_'+pn' k'm_'+O--n')'+

En=

(, -,, ]).
n__ _a_nn= pn',_'[- 1,(1- n')(=.p+ 0,,.,)+

+2 (1 -- !_)a,,,p (l --n_):__], (k. 5 )

= -. 4 _ = +2a._+n

2

,?
In spite of the presence of supplementary terms the coupling between the ,;

functions Wren(x), Wm + i, n (x) is so small that in practice we can use expression

(2.2) to compute the frequencies i.e.,

S

t
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×F +.- "-1/o,
p_= A _

( _Bm_ , (_.6).4+n2+/_2 1+ k,n ]

A2 = E

As a numerical example we consider the spectrum of natural frequencies of

shell No. 3 (table i).

The results obtained are shown,in table 4. As was to be expected in this

case, the values of the natural frequencies are higher than in the first two
cases, and it is only when n = lh that the natural frequencies cease to depend
on the method used to support the shell.

5. Free Shell

A floating or free shell is a shell such that M = Q = T = 0 at /157
both ends.

The bean function is written in the following form

where

B.= c,,k.--cos_. (5.2)
chkm+sinkm '

: k,=0; k_=4.73; k#=7.85. (5.3)

The characteristic peculiarity of such a shell is the occurrence of trans-
verse waves and the absence of longitudinal waves.

The general approximation equation will always be (4.6), specifically

_8._./ ('-')"'('+%--!JJe'_l/ (5._)×(_,+ +(,-_)
p_---- A _

n4"+n'+ k2,.,'(l +6 B-'_m)

1967008060-013



For km = 0, equation (5.4) is transformed into the well known equation

for a ring

p2 = A 2._n4(1 -- n2)2 ,"
n4 -b n2

the spectrum of frequencies in Hz is shown in table 4.

6. Combined Oscillations of Two Cylindrical Shells

Let us consider the o_ci__llations of two cylindrical shells of the same

radius R, which are rigidly atmached to each other along the section x = t1

(figure 2). We shall as_mne that _e_i e_d_ x = 0 _ x = t2 are arbitrarily

supported. We shall solve the problem by the energy method by assuming that the
natural oscillations of the shell can be approximated by series of the following

n (6.1)

n9

In regard to the f_nctions Wm(_.), Vm(X) and Urn(x), they may be selected in

such a way that the conditions under which the shells are joined along the bound-

ary x = tI a_'e satisfied, i.e.,

W,,,,(6)=:W,,,2(l,),
V_,(I,)= V.a(l,),

UH,, (l,)=U,., (l,), (6.2)
I_ml (1,) :-=W'm_(/t),

M,,,,(l,)= M,,n (it),
Q.,, (l,)=Q.a(l,)

The subscript "i" refers to the shell 0 _ x _ tl, and the subscript

"2" refers to the shell tI _ x _ t2.

Let us assume that the function W (x) represents a beam function of the com-m

posits beam whose rigidity along the region O-tI will be EJI, and along the region

tl-t2 it will be F__2.

t
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If at the b_dary where the two shells are Joined we have W I = W2,

_'_=w_,eJ,ve;=e4w;,
EJ_W'_== EJ2W_ ,

then condition (6.2) is satisfied automatically for V and U as a result of equa-
tion (1.5) and is approximately satisfied for M and Q.

If Wl(X ) is the beam function for the first shell of the form (1.7) whose 2

constants are determined from coudltions at the end x = O, and WmR(X ) is a beam

function for the second beam whose two constants are determined from conditions

at the end _ = _2, then in place of equations (6.2) we can write the following
system of equations

I I clIvII /',1 II'vl I I t",l Iw., 1I
ClWml + 2win2 = _,..1 wml + I._2 Win2 ,

cllvl'l !/',,llv.'l r, illv/'ll ! clllvl'll

l'_',,,l-l-'..=-'.,==,.-i"=l-r- =w,,,_, (6.3)
Jl {Cl/_ml[ I +C2J_m=}! 1 I r/'_lllall lt',ll_.ll]= J2[_-, 1/Vlml-l'- _2 -'vlm2],

I I ! ! [/',llnll _,'_ilt-_ll ]¢, [C,Q.,+C_.4 =J, t_,'_,,,T'..,,e,.,j,

where Wi, W'i, Mi, Qi represent a definite grouping of hyperbolic and trigono-

metric functions which satisfy the conditions at the ends x - U for the first

shell and x = 12 for the second shell. The superscript "I" refers to the first

shell, and the superscript "II" refers to the second.

The characteristic determinant of system (6.3) is written in the form

wL, wL, wL', w_,
I_'_,',WL' W_',' W'"m2

M',,, M', ,M", ,M'.', =o (6.4)

ill i

m m

0 _ It = l, :

Figure 2. Composite shell.

14

I
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_" (sic) has the form
In the expanded form equation (6.&) when v= J2

_2_(M, Q)_ (W, W'h + _[- _ (w, M),A(W', Q),,+

+A(W',,_),IA(W,Q),+A(W,Q),IA(W',M),+ (6._)

-1-A (/14,W)I IA (W', Q)I]-{-A (W, W')I A (a_Q),=0.

In equation (6._) A represents the elementary determinant of the following
form

IWll W',,,_
A(WW'),=I

W_,',W_._.[" (6.6)I

Determinants of the form (6.6) may be expressed in terms of the Prager
functions (ref. 6), i.e.,

..

A (kn,) ==-ch k,n sin kn, _ sh k_nCos krn,

B (k_) = chk_ sink,n--shk,,,sin k,.,

S (},n) "=-0 sh k m Sill kin,

C (kin):2ch km coskm, (6.7)

E (k.,) = ch k,. cos k., + 1,

'D (k,.) = ch k,. cos km--1.

Functions (6.7) are tabulated 1 and therefore it is not very difficult toJ

find the roots of equations (6.5), If the rigidity of one of the shells is

substantially greater than the rigidity of another shell, the dominating terms
of the equation will be the coefficients in front of v 2 or vO. Consequently in
place of equation (5.6')we can consider the expression

A(MI Q)A(W, W')=0. (6.8)

Equation (6.8) in turn breaks down into the following two

a(M, Q)=o oT a(W, w')=o,

i.e., at the section x = t1 one of the shells may be looked upon as a rigidly

supported shell for which A (W, W') = O, and the other may be looked upon as a

freely supported shell for which A (M, Q) = O.

Let us rewrite (6._) in terms of the Prager functions_ if the first shell
(at the section x = O) is supported in a cantilever fashion and the second shell

(at the section x = t2) is freely supported.

For the first shell we have

w,=c,(cosk#-ch +C,(snk,x--'shk#)i (6.9)
in,

IK. Gogenemzer and W. Prager. The Dynamics of Structures (Dinamika i_

soor_zh_niy). ONTI, 1956.
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On the basis of (6.7) and (6.9) we obtain

A(w, _')= - 2o_k#_, _(w', M)=S:k_I4,
A(wM)= 2a,k]li _(W'Q)=2A,k_I_, (6 .lO )

a (l_'Q)----S,k_l_i A(MQ)--2E,kS,I_.
In terms of the Prager functions we have the following for the second shell

w=c, L[c-2s kj+ A.,.kj kj]+
(6.11 )

. _c+s k__l_shk_]+C2[--Bcos R_-t----_-- sin J
On the basis of (6.11) the elementary determinants can be written in the

form
.

A(MQ)=2O_ , A(WQ)----s,I&

A(W'Q)--2A 2 , A(WM)-- 2B_lll, (6..12)

A(w'M)- -s2_, A(w_")2_2k_/4.

Substituting (6.10)and (6.12)into (6.5), we obtain the basic /160
equation in the form

If th_ rigidity of the basic and of the supported shell is the same, i.e.,

,,=I_--_, we obtain

(D,D,+ E,E,)--(B,A,+A,Bt)--S_S_--O.2 - (6.l_)

Substituting the values of the function DI, D2, _, _, BI, _, 51, S2,

into (6.1_), we obtain

In this case we obtain the slam values for k as in section 3._ i.e._ form

the composite shell the function @(;)_is determine_ in the same way as for the
continuous shell.

16 .--
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In all of the remaining cases equation (6.5)is used tc determine km and

to determine the approximating functions for each shell, which can be expressed
in terms of one constant A by means of equation (6.4). The natural frequencym

of oscillations _s determined from a system of n equations which has the form

(7.1)

.[(p, _ p2)_ p2(T,+ T2)]___0,
c)Am.

where P_ and P_ are the potential energies of the first and second shell, re-

spectively,_er__y _s _'_ua_t;_en_s_!V_f_anJd_l);f._e_'"a_example we
shall consider the results of testing the freely-suspended, cylindrical shell
reinforced at the ends.

The Geometric Characteristics of the Shell

The basic shell has the following parameters

I=232 _, h=0.7 .u._, R=iI7 ._,,,

' ,/ =73oo, [_=-- -- 1.52. I0-6,
V o.mQ

while the supporting shell has the following parameters

i=9 _, _--2.08. I0-4.

Since the flexural rigidity of the supporting shell is substantially greater

than the rigidity of the basic shell _2 > _i' we can examine the spectrum of the

composite shell approximately as the combination of the spectrum of a ring and a
rigidly supported shell.

Figure 3 shows the theoretical curves and the experimental points. Qual-
itatively the picture is confirmed experimentally. In regard to the fact that
the frequencies do not coincide, we may explain this by the circumstance that in
this case we cannot limit ourselves to a single term of equation (6.5) and also

by the fact that the true geometry of the shell differs from the one which has
been assumed.

IX. Conical Shell

Cylindrical, conical and toroidal shells represent shells of /162
revolution. We select a system of coordinates in such away that it coincides |with the principal lines of curvature.

4
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Figure 3. Theoretical and experimental
frequencies of a reinforceJ shell, i,
Variations in natural frequencies of
oscillationsof ring; 2, variations in
natural frequencies of rigidly supported
shell.

I. Geometric Parameters and Strain Parameters

We direct the X axis along the generatrix of the cone (figure ib); we

designate by _ the angle of conicity of the shell; we designate by R0 and_ the
respective radii of the small and large base. Obviously the radius of an arbi-
trary angular cross section will be equal to

r--Ro-i-x sin o_ (i.I)

The position on the parallel ring is determined by the angle O. Retaining
the symbols which have been adopted in the theory of shells (ref. 2), we obtaAn
the following expressions for the geometric parameters

a=x, A=I p--o. 8--r;_=-s--=O; 1 =co,a 1' _, R,, _" _ "! (1.z) ......J
18
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To obtain the strain parameters we represent the displacement along the
normal to the middle surface by w, along the tangent to the circle of radius r
by z and along the generatrlx by u. Then we obtain the following equations for
the strain parameters of elongation

OxOu , •1 (_vv )
_x-- -=-_ u stna -- _v cos a .

(1.3)

r 00

The parameters of flexural deformation are
_w

aX2 '

1 /o_w __ __ ¢0$ sin ar Ox' (1._)

'f"
2. selection of the Approximating Functions

The natural oscillation functions w, v and u are selected as a sum of the
products of two functi_,ns: one depending on x and the other depending on e,
specifically

_,=,_ e.v,..(.,O.,,,,,o; (2.11

Anm,_ bnm , Cmn are arbitrary parameters.
In selecting the approximating functions we follow the method adopted and

verified in the design of the cylindrical shell. Specifically we assume that

Win(x) is a beam function, X(x), V(x) and U(x) as well as the parameters Bmn

and Cmn are not independent quantities, but are associated with Wm(X) and A
by means of auxiliary conditions. These conditions are reduced to a situation

where we assume that ¢0 = w = O.

Substituting _2.1) into (1.3) we find that for "arbitrary values
of 0 and _ the follo_ conditions must be 8att_fied

e.v. (x),,+C.,,u.(4.d..- A.x.cm.-o,

We obtain the following expression from the first equation, which is
_curate to within the longitudinal component,

19
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Substituting the value of B V (x) into the second equation, we find (2.3)m

Thus, on the basis of (2._) and (2.5) and the assumption that Wm(x) = Xm(X),

we obtain the following expression for the approximating functions in place of

(2.1)

"=22

-gf-.X'.r-- X. sina) cosa cosnO.

3. Detern_nation of those Strain Parameters Related to

Selected Approxi_ting Functions

On the basis of (2.1) the expression for the tensional strain parameters n_y
be written as

-- Zj zvj--_- A. r cosocosnO,
(3.1)

p icyIi_livlc,II I
, ! -ttk,II

M " 1

I _
t t I $ # # I Y l l tin

FiKpe _. Cc8_rison of relative

l_ciel po of tca_ldaA IhelAI

with thole of cyli_Ical shell

(r/1 - _/8., _/_" - O.O1) for ]
m = i a_lvariouaa.

2O
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It follows from expression (3.1) that for this selection of the functions

¢2 becomes equal to 0 only for shells of small conicity or for large values of n.

The parameters of flexural strain will be

h Xtn 1 •
(3. 2 )

(cos2o- n_)+ 7 sln,+jcosnO,

' /
2. Com_utation of the Coefficients in the Equations

We compute the frequencies of the natural os__llations of a conical /16_,
sheJl by the Ritz.method. For this purpose ve solve a system of equations of
the form (l.lO). The diagonal terms of the equations are vrittem in the follow-
ing manner

+_,,°o++:,(++._+_..,.olI,+,_i+,_,_+.x:+
• (_.l)

]+ ,t I'(+ I'})slna 2(I_IA cos2a--.2, ___2" X,,,sl.o, rdx .
n • r2

I

_,,,,,-oI _ [(_+n+cos_o) Xt.+
+ (+.m)

o

+ (X'mr-- X= sln op cos _o] rdx,

The supplementary coefficients of equations (1.10) usually do not become

equal to zero_ and the functions xm are selected in such a way that the condition "+I

_j.+_,_,-o,,,,).r+,_.,,_ t,,._o°_,,,oo.++'_'_'_'0,.-,,.**._. ++
+
++,

Oonsequentl_ we obts:I.n

i

t
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, c°°I{x:X;r+,no(X: ,n)xam.--" 1--1_ n4' ' r

•X= -- X_ slna _'_

l

(4.3)

Xp _ a n_).-I- X_ slna]Jf-+_;,, [-fi-(cos - ._ , _,x:,x

!"v , X_ sinai IL) (cos_ a--.2)2x [_[-(co_"_,-,_')+--;- , +_s- .,
X

X --" _ "]_ r --" r_

!

I

o . (4.4)
X (X=r--X,, sina)(X_r ' Xp sin a)] r dx.

9- A Shell With Hinged Edges

Let us consider a simple computational example when the edges of /169
the shell are hinged. In this case we assume that

X.=sln _=sln k,,_, (5.1)

In this ease it is obvious that the necessary boundary conditions are satisfied
at the edges of the shell, i.e.,

_=o,M-b., (5.2)

(the second condition (5.2) with an accuracy up to _ ._slna

Before beginning the computation of coefficients (_4.1)=(4.4), we introduce

the following designations

"'eP_ 2 ' '

L-(-"
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Part of the integrals is not obtained in a closed form. Therefore, by ex-
pending the function under the integral sign in a series and integrating term by
term, we obtain the required values of the integrals. To simplify we designate

1

u

!

cO._rXdX = l.__l+l.i+o (.5.4)o

i

r3 zK o )

where Lo== 1 -_-: ( --))'qi, (5-5)
i

i

n

4=1+0+_Q,_'+', (5.7)
/_,-1

qi=_(_)2" (--1) " (�2,,+t +2 ' (5.8)
/I

,o=_(_,_+<_.-)-[_,_, :_-l - "(_-'>] (5.9)2(I +X)2 2,,+2 J'
n

p__--.Z(- 1_,+, (2"=)_" "(b,-_) (5 .lO)2n! 2n + I-1- 2 '
II

where m is the number of waves in the shell in the longitudinal direction. /166
From (5.11.)-(5.10) and the table of elementary integrals we obtain

ik (1 + ).)2+ 1/Rcp E 2

•-t-0,7_RoR_psln_a -I-Losin4a]-4-Pn4(k4RaoRcp+ L, (cos=a --

-+.(,-,'<_,",,,.,,.)+,,eo[['"<'+'t.,.',.++ (5.n)

+,(,__)(,o.,:-+,),_,,(o_0_+,)]+,,t,,.'.+
+,(,+,,+°-,',-,(,-,,(+°-+1'1]+.(,.,,)

...... ,2_3

L(.'
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We neglect the coefficients amn+and bmn. In the first approximation the
pn pn

frequency of the natural oscillations of a conical shell may be determined by
setting the diagonal terms equal to zero, i.e.,

,.=+-_-+. (5.13)

For large values of n and for a large conicity, this equation will not be
valid, because in a conical shell there is always a coupling between the oscil-
lation modes w and

m re+l"
2 from the determinamt of the follo_o

Therefore, it is necessary to compute Pl

l l
a_.n _b=_ ---+,..__.* .m+,.n

UM, n I"1 Umn

am+l.n--_F2hm+l,nn'+l.n__,2bm+'.n ' (5.1h)
m, n r I--m, Ol --M'I-I, _ rl m-l-l, n

where the expression for size and diagonal coefficients is given by equations
(i+.l)-(t+._).

6. Numerical Example

Ye. Breslavskiy tested and computed two conical shells which were hinge-
supported at the ends.

Their geometric ch_acterlstlcs _e shown in table 5.

We compute the fre_encles for the case m = l, n = $, _, 6 and 8, i.e.,
for a single longitudinal sem_wave and for 2, _, 6and 8 _ves in the circum-
ferential direction.

We carry out the computation by means of equation (5.13). From equation

(5-_) we compute the coefficients associated wi_the conlclty of the shell: _,

For the shells un_r consideration, angle _ is small. Therefore /167

we can ne_ect the quantlties sinS _ and sin_ _ in expressions amn and bmu and
2 _n mn

let cos$ _= i. Then t_ appro_mate equation for p will be

'+L'<t-_+=_'_t-_m(_'__+_..(_v___)*,°'_.

+ ++ + i
mk

+
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TABLE 5. GEOMETRIC C_a_ACTERISTICS OF THE SHELL.

ii ii " i

n2

*_" RO Ri AR 1 sin a • cos a h 12R_ =_
I

1 10 17.5 7.5 60 { 0.125 0.992 1.10-_ 8.35. lO-e

2 12.5 15 2.5 85 I 0.0294 0.999 1.10-2 5.,36.10-6

I V/r H (13) (/)'
o_ R,p x y'_-_-_p _(1-_2) 2_(12) Ro I. (l+a)

!

1 13.75 [ 0.75 11.7 5.3. lOS 0.72.104 0.2/5 0.5591
A

2 13.751 0.2 13.10 5.3.10s 0.641.104 0.211 0.198

c_- a_e

where

h3

and the frequency of natural oscillations in Hz will be

Pl ,V / EP--2= f R-'_;p i - s_'

For purposes of comparison table 6 presents the computed and experimenta_
data.

In addition to our computed quantities Pl and P2' which are based /168

on the assumption that the transverse cross section is not elongated and that
shear is absent in the middle surface for the cone, we present the computational
data of Breslavskly which take the deformation of the middle sur£ace completely
into account.

It follows from table 6 that as the conlcity increases, the natural frequency
of oscillations of the shells also increases. AS far as tI_eaccuracy of our and
Breslavskiy theoretical methods is concerned, it should be assumed that they are
the same.

The advantage of our methods is reduced to the possibility of obtaining
simple design equations. As the value of n increases, it obvious that the natural
oscillations must be determined from equation (5.1_).

25
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TABLE6.

S_i _ I a----7°lO' S_ _ 2 a=l°40 '

PB c _ PB c_ neP P

2 -- -- 2"[6 311 332
3 310 326 360 200 192 192
4 285 2,54 270 244 219 222
6 456 447 455 410 4.54 450

p_ = experimental frequencies

PB = Breslavskiy data

III. Toroidal Shell

A shell of this type is formed by the rotation of a ring (figure Ic) of
radius r with respect to the z axis. We designate the distance between the cen-

ter of the ring and the axis by RO. Since the literature contains no data,

either theoretical or experimental, on the frequency spectrum of natural oscil-
l_tlons, in practical calculations the torusis sometimes replaced by a cy_indrl-
Cal shell, who_ length i is eg_al_to the average perimeter of the torus_he _a_
_orus repr_een_ a _Tose_ surface, an_ therefore the rigidity of such a shell
substantially exceeds the rigidity of a cylindrical shell. The high rigidity of
a torus compared with _hat of the cylinder has its effect not only on the absolute
value of the frequencies, but also on the nature of their distribution. In other
words, if the lower frequency of natural oscillations of a cylindrical shell is

aSSOClatEd __th a minimum_ waves in the longitudinal direction, then this con-
dition is not observed for the torus. The lower frequency is associated not only
with the geometric characteristics, but also with a certain number of waves in

directions 8_and _.

I. Geometric Parameters and Strain Parameters

The radius of Aarbitrary angular cross section will be

rcos + (l.l)

The position of the point on the surface of the torus is determined by a

system of orthogonal curvilinear coordinates 0 and @.

Using the symbols presented in reference 2, the geometric parameters of the
torts will be
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a=0; A=Ro(l+acos_i; _=q; B=r; (1.2)
1 cos _ 1 1 1_[_=0._-_-. ; _---_ _;

R, A R2 r R12

To obtain the strain parameters we let
w be the displacement along the normal to the middle surface;
v be the displacement along the tangential coordinate e = const.
u be the displacement along the tangential coordinate _ = const.

From the general equations of the theory of shells the strain parameters
for elongation will be

e 1 / Ou sin?_mcos_ /°=T_,W --_' /
(l.3)

"_=7 -- _ ; r o_ \ a l A O0 "

The flexural parameters will be as follows /169

' r, oco. o.
1 o(o.+ )_=V_-__o, _ ' (l ._)

.=,_o[o(o., ) .,., (o.
q- o_°Ucos_].

_]u_t;ons ave _.eal _o1" only _¢or _. close_ #or_ burrow a.y _'ovoi_OI ,St;rf%£e ,
2. Selection of the Approximating Functions

In determining the frequencies of natural oscillations of a toroldal shell

as well as in computing cylindrical and conical shells we utilize the Ritz method.
The success of this method is determined to--large extent by the selection of the

approximation functions. It is expedient to determine the displacements in the
form of a double series of fucntlons, i.e.,

,.,,-_ z,,,,,,,w,,¢o)w.¢,).
_,-_M.,v.¢o) v.¢,). (2.1)
, ==_._ N,,,,u.CO)U.¢,p).

27
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Let us assume that Wm(e) : cos m & determines the oscillations of an ele-

mentary ring of radius R; Wn (_) = sin n _ determines the oscillations of an

elementary ring of radius r; m and n are whole numbers. Imposing the additional

conditions ¢_ = m = 0 on the displacement_u, v and w, we obtain

,, n

where

U:=n _cos_?I(1+a cos?F.
We determine the strain parameters for the selected functions

.0 _;_ A cos,no[ .,2
= ._.a_..J"-_'- L-_""_ a'F"

• ]+ (n-- l)sln(n -I-1)? + (n + l) #ta(n -- l) v
2n (I + aco, v) ' (2.3)

ZZ Z'mc°tmO" Is _U'c°se'Jr"%_ Ror(l +a co. V)s "_"

n2-- 1 sifteev ]+ _ cos n? cm ? + am 2 l+acos_ '

,,=_F,F.,L"
_ ras 1

..{_a(1+ nS)cos(n -- l) ?+(l -- ns) cos(n 4.-I)V,
9n: (1 + a cos ?)

3. The Formulation of the Characteristic Equation

Having determined the strain 1_ra_eters and having formulate_ the I_
expressionSfor the potential P and kinetic energy T, we dlfferenti_te P and T
with respect to L and find the coefficients of the eharacteristlc equations.mn

Since the system of functions which depend on 0 i8 orthogonal_ we obtain a system
of the following form rather than a single characteristic determinant

z8

,.._.' ;.
. : ,:: /....(.
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d ran- x2bra" din" __ x2bra.mn -" -m. --mn+l mn+l. • •

m. -- -mn --mn+l _ -mn+l. ••

• • • • • Q • • • • • • • • • •

,r* 2 mn mn
where d_ = a amn (If + _amn (II),

P= 1-_'r2'h_ x_ =/pr_l --Ep 0 (3.2 )

After simple algebraic transformations,the coefficientsamn (I) amn (II),mn ' mn

b_ may be _itten in tl_,fell_,a_nner

--4 Lmn 4-- _-- . m2
n o=.=. t. +a--_- U_(?)(l@acos?pdT. (3.3)

o

The last integral is also taken in series for sm_ll _ and large n (n > 4)
(this term may be neglected)

n4a_(])=:T[m'U:u'4"'_'z (n--1)sln(n+ l)?+(n �l)sln(n--l)'t] 'XI+aco.?o

×(1+acos_)d_,
h

oY/n4a_(ll)=n 4 (n2- lpsln=n?-_ (l+.cosvP X
(3._)

×[_._-'_:_=,+.'-1._=.,.,n,+=_,,+o.o.,''"" ]2+
_-2_ In=--I)sl,n? [a= m_ .., --1 +.cosv --_ u. cos?-I-

+._--1 ]
-- cos n? sin ? _ am _ =Inn? ._.

n 1 + u cos ?

-- u2m2 n__ | G+2(1 _)(1 +"_-.osv=)['"_c°sn?+'_" ×.

'X (n+"_)co'(n-n)v+(n- n=)co,(n+ n)v]l(l_Fac=._) (3.5)
I + acosv ,jj d?.

The integration of coefficients a_ is associated with substantial corn- /171

ut_tional difficulty. The tutegrals are not determined in closed form and ,
hey must be confuted by means of series, Since _ is a small quantity,

o_
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0.i < _ < 0.5 we may retain only the terms 0 and 2 in coefficients amn (I) and
mn

mn (II), specificallya

4 mn
n a,,(1)._m4a2(Lo_L1).-[-um_n2n'_+ IA1"bn2--I

-l'_n'[Bo(sz,_l_l)..l_B, _._._.1. (3.6)

a,_: (l l ) _.._(, --1)2 -l- ==[-_21 ( Bo - _ ) "b 2m' (n' --1) X

n,-l_l
x _0(_+(I-_) .= /l. (3.7)

However, _e cannot neglect the quantity 2_ (I) compared with the quantity

_.n_ in the diagonal terms, because the order of m_gnitude for the series of the
values n and _ is the same. In the side terms we retain only the quantities

oe2oFmn+ i.
_In

The parameters LO, _, _, B0 an_ B2 in equations (3.6) amd (3.7) have the

following expressions

_ 2n

(. V'2"So=_ _,T/ -_-,
i.,.o

(_.=W+,(_+=), (3.a)A,= -2 _, 2 / (J+ ])m'
b..G

8,=, ,(t+ 2)ui" '
i--o

For convenience of computations we present the values of 1,0and h in thetable
e-

= n 6 6 8 9 10

I Lo 3.17 3.11 3.06 3.06 3,Ot1/2 _,-, -_,= _.=. -=,= -=,= -=,=.,
1/3

--I, 18 --I, 13 --I ,08 --I,08 --l,(l .. ]
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To evaluate the frequencies of natural oscillations _¢e ,._tilizethe follow-
ing approximate equation

• mnI (i) + pn4a,,,,,(,,I)
p2< Qr2 n4+n2 ' (5.9)

which has the following expanded form

g_. 1 L[ a2 _n4 (n2- 1) -4-a4m't (L 0 + all)-4- aSm2n2A:lJl_a'_ 1-- Qr'Z B° T "_ n2(n2+ 1) " (3"10)

For small values of _ the frequency of natural oscillations is practically inde-
pendent of m, which gives the number of waves along the radius of the large
circle.

For small values of _, i.e., if 2/2 _ _n4, the frequency is computed by

means of the equation for an infinitely long cylindrical shell. Figure 4 shows
the variation in the relative frequencies of natural oscillations p_ of toroidal
shells with parameters a_-i/4,_ = i/i0 and h/r = 0.01 and of a cylindrical shell

for which r/I = A,-h/r = 0.01 (the quantities.pF _P) are compared). As s
decreases in value, the frequencies of the cylinarical and toroidal shells will
approach each other. For small values of n the difference in the frequencies

will be substantial due,+to the difference in the coefficients amn (I). It is

known that the Frincil_l role in the flexl_al oscillations of thin-walled shells

taken into account as the tensional energy, as well as the flexural energy.
s differs from the case of the cylinder where the tensional energy is deter-
ed only by the longitudinal displacement u. The equations for the cylindrical
Ii _y be used only when n > i0.
d by the displacement w, which for a toru_ is
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